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Abstract-h4ultiphcity features of natural convection flow in porous media, generated and sustained by a 
uniform internal heat source are investigated. The flow, in a two-dimensional enclosure, is described by 
the Brinkman’s extension of the Darcy equation. No-slip boundary conditions are used. The focus is on 
the role of the Brinkman viscous term in influencing the location of singular points. The behavior of the 
system is regulated by two control parameters, the Rayleigh number (the dynamic parameter) and the 
Darcy number. The singular solutions are constructed using algorithms from bifurcation theory. Multiple 
solutions consisting of symmetric and nonsymmetric solution branches, are revealed as the control par- 
ameters change. The range of the Rayleigh number for which a unique solution exists is enlarged when the 

Darcy number is increased. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Over the last three decades, natural convection in 
fluid-saturated po:rous media has been studied quite 
extensively. Numerous authors cite a wide variety of 
applications involving convective transport in porous 
media that include utilization of geothermal energy, 
fiber and granular insulations, design of packed bed 
reactors and underground disposal of nuclear waste 
materials. Several others investigate the intricate nat- 
ure of solution structure from a fundamental point of 
view in idealized settings. 

When a fluid 1a:yer is replaced by a fluid-saturated 
porous layer, the Navier-Stokes equation which is a 
reliable model for the fluid layer, is replaced by a 
simpler, but less reliable model for the fluid-saturated 
porous layer. In fact there are uncertainties about the 
range of parameters over which a porous media model 
such as Darcy’s equation might remain valid. Even 
though the model is considerably simpler than the 
full Navier-Stokes equation, the range of phenomena 
exhibited by the Darcy model remains rich. Compare 
for example the richness of the solution structure 
revealed by Nandakumar and Weinitschke [l] and 

t Presently at POSCO Technical Labs, Pohang P.O. Box 
36, 1 Koedong-dong, Nam-ku, Pohang-shi, Kyungbuk, 
Korea, 790-785. 

$ Author to whom correspondence should be addressed. 

Weinitschke et al. [2]. Among the earlier works in 
porous media that have recognized these similarities 
are those by Lapwood [3], Elder [4], Caltagirone [5] 
and Kimura et al. [6]. Lapwood examined the linear 
stability of basic conduction state in porous media 
using Darcy’s law which was inspired by the Rayleigh- 
Be&d problem [7], governed by the Navier-Stokes 
equations. The ensuing response of the fluid can be 
quite complicated, particularly when one considers a 
geometry with a high degree of symmetry. As the 
degree of forcing (i.e. heating) is increased, the flow 
structure losses these symmetries spontaneously and 
the multiplicity of solutions increases. 

Since the Darcy model was developed in an empiri- 
cal manner, questions regarding its universal validity 
(in the same sense as the validity of the Navier-Stokes 
equation for fluid layers) has been addressed by 
numerous authors. Slattery [8] and Whitaker [9] have 
examined the relationship between the Navier-Stokes 
equation and the Darcy’s law through volume aver- 
aging concepts. Beavers and Sparrow [lo] have exam- 
ined the non-Darcy effects, while Beavers and Joseph 
[l l] and Saffman [12] have looked at the boundary 
conditions for the Darcy model. The phenom- 
enological Darcy equation does not include inertial 
effects ; nor does it satisfy the no-slip condition at 
bounding surfaces or porous media. These limitations 
have been suspected to be the cause of modeling errors 
under certain circumstances in convective heat trans- 
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NOMENCLATURE 

half-width or half-height of domain 
[ml 
cross-sectional area [m’] 
specific heat [J (kgK)-‘1 
Darcy number (K/a’) 
hydraulic diameter [m] 
acceleration due to gravity [m se21 
identity matrix 
thermal conductivity [J (msK)-‘1 
permeability [m’] 
Nusselt number (hD,/k), 
dimensionless 
corrector for R, dimensionless 
pressure [Pa] 
corrector for Y, dimensionless 
domain of computation 
residual 
Rayleigh number (KgPQ,Aa/Kclv) 
heat generation rate per unit volume 
[w mm31 
arclength parameter 
symmetric matrix 
temperature, K or corrector for 0 
velocity component in x-direction 
velocity component in y-direction 
weight factor 

X direction along the width of domain 
Y direction along the height of domain. 

Greek symbols 
V gradient operator 
V2 Laplacian operator 

; 
thermal diffusivity (k/&J [m’ s-i] 
coefficient of thermal expansion [K-‘1 

R vorticity 
p dynamic viscosity [kg (ms)-‘1 

& 
kinematic viscosity [m’ s-l] 
stream function 

P density [kg rn-‘1 
6 temperature. 

Subscripts, superscripts and other symbols 

: 
antisymmetric property 
bulk quantity 

f fluid property 
S symmetric property 
W quantity at bounding surfaces of 

porous media 
dimensional quantity 
quantity of null eigenvector 
averaged quantity. 

fer across porous media. To overcome these limi- 
tations, the Darcy equation has been extended in an 
empirical manner by several authors. Amongst others, 
Forchheimer [13] introduced the inertial term and 
Brinkman [14] included the viscous force term to the 
Darcy equation. 

Numerous studies [15-l 81 have focused on the non- 
Darcy effects using these extended Darcy equations, 
but they have not examined in detail the multiplicity 
features of convective flow in porous media. From 
experimental studies and numerical calculations, it is 
found that, for the same condition, the patterns of the 
convective flow in porousmedia could vary. That is, 
multiple solutions through bifurcation are possible. 
Furthermore, it is likely that the convective flow 
undergoes complex bifurcation as the buoyancy is 
increased. The differences in the solutions structure, 
the location of the singular points (such as limit point, 
symmetry breaking bifurcation point etc) and the con- 
vective flow patterns predicted by various alternate 
models describing convective flow in porous media 
could serve as a model discrimination tool, provided 
a good set of experimental data are available. With 
this as primary motivation we investigate the detailed 
solution structure and how it is altered by the inclusion 
of the Brinkman term. 

The present study is concerned with the natural 
convection flow in porous media within which heat is 

uniformly generated. To satisfy the no-slip condition 
on solid boundaries, the Brinkman’s extension of the 
Darcy equation is employed. The conditions under 
which the effects of the Brinkman’s viscous force term 
become significant are of primary interest. Con- 
struction of multiple steady state solutions are carried 
out numerically using the algorithms from the recently 
developed bifurcation theory. 

PROBLEM FORMULATION 

System description 
The system considered in the present study consists 

of a horizontal, two-dimensional porous medium of 
width 2a, height 2a and permeability K. The porous 
medium is saturated with a fluid of density p and 
viscosity p. There is a uniform internal heat generation 
per unit volume Q, and the boundary of the porous 
medium is maintained at a uniform temperature T”,. 
The porous medium is also assumed to be hom- 
ogenous and isotropic. A sketch of the geometry and 
coordinate system of the porous medium under study 
is shown in Fig. 1. 

Governing equations 
The volume-averaged conservation equations of 

mass, momentum and energy for a two-dimensional 
flow field are : 
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Fig. 1. Geometry and coordinate system. 

f7.v’ = 0 

-(V’p’+pg)- ;v’+pv’““’ = 0 

e, (v’ * \7’) T = CW T + (pc,), 

(1) 

(2) 

(3) 

The Boussinesq approximation is invoked to allow 
for the density variation with temperature in the grav- 
ity term of the momentum equation (2) while density 
in other terms and all other material properties are 
assumed constant. The reference temperature is rW. 

PI = PW[l -LV- rdl. 
Here tl is the e:ffective thermal diffusivity, j3 is the 
coefficient of thermal expansion and pW is the density 
at the temperature rW. The Brinkman’s extension of 
the Darcy equation, allows for both the no-slip and 
impermeable boundary conditions to be enforced on 
the momentum equation (2). For the energy equation 
(3, no heat transfer resistance between the solid and 
the fluid phases is assumed. Equations (l)-(3) are to 
be solved in the two-dimensional region defined by 

R’:= [(X’,Y’)]--a < x’ f a, --a < y’ < a]. 

Since the flow is two-dimensional, the stream fimc- 
tion, Y(x, y) and the vorticity, R&y) can be intro- 
duced as 

Defining the following dimensionless variables, 
I 

x = x’/a, y = y’/a, u = -!l 
u/a ’ 

v=v 
da 

Equations (l)-( 3) can be cast in dimensionless, stream 
function-vorticity form, applicable over the non- 
dimensional domain, R := [(x, y)j - 1 < x < 1, - 1 < 
Y < 11. The fina.l form of the equations are : 

-Raae +R-DaV’R = 0 
ax 

V2Y +n = 0 

(4) 

(5) 

aY ae avaae 
v’e-&-dx+dxdy+1/4=0 (6) 

where the control parameters appearing in equations 
(4)-(6) are defined as, Ra = Ku/?Q,Aa/kuv and 
Da = K/a*. Once the temperature field is obtained, the 
average Nusselt number, a useful scalar measure of 
the system performance, can be obtained from the 
following overall energy balance 

Q,(AAz) = h(Az)Sa(r, - r*,) 

where AZ is the depth perpendicular to the x-y plane 
and h is the heat transfer coefficient. From the defi- 
nition of the Nusselt number hDh/k 

Nu= QsADh 1 
@a ((Tb - CJ) 

The above equation in the dimensionless form 
becomes 

1 1 
N”=Q&-j (7) 

where the bulk mean temperature is 

(0,) = l?dxdy/A. 
s R 

Symmetry and boundary conditions 
The governing equations (4)-(6) have the following 

symmetry features. 

u(--X,Y) = -U(X,Y), v(-X>Y) = r&Y) 

V-&Y) = -YY(X,Y), Q(-X,Y) = -wGY), 

8(-&Y) = W,Y). 

Therefore, the boundary conditions on the line of 
symmetry (x = 0) are 

y=o, a=() co 
’ ax . 

These can be used for the computation of the sym- 
metric solutions over the half domain 
R+ := [(x, y)lO < x < 1, - 1 < y < 11. 

On the solid boundary, the Dirichlet type boundary 
conditions are used for the temperature and the stream 
function 8 = 0, Y = 0 while the values of the vorticity 
are obtained by taking the Taylor series expansion for 
the stream function [ 191. 

NUMERICAL METHODS 

Calculation of regular solutions 
The nonlinear boundary value problem defined by 

equations (4)-(6) can be represented as 
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F(u, Ra, Da) = 0 (8) 

where II :=(B(x,y), Q(x, y), Y(x, y)). The nonlinear 
equation (8) can be solved by using the Newton- 
Raphson method in which the successive correctors, 

Ufl =(T(x,Y),o(x,Y),p(x,Y)) 

are sought by solving the linear boundary value prob- 
lem 

F”(U,, Ra, Da)& = r, (9) 

Where F, is the Frechet derivative. The explicit form 
of the equations represented by equation (9) and 
derived from equations (4)-(6) are, 

-Rag fO-DaV”O = r, (10) 

V2P+0 = r2 (11) 

ayaT apse 
V2T-zdy+zay=r3 (12) 

where ri, r2, r) are the residuals of equations (4)-(6). 
The solution for the linear boundary value problem 
equations (1 0)-( 12) can be easily obtained for Ra = 0 
by using the zero profile as a predictor uO. Then, the 
predictor which is needed for the next step Ra+ ARa 
can be generated by employing the Euler-Newton 
method 

u(Ra+ARa) = u(Ra)+ $ARa 

where au/aRa is obtained from 

F”(u, Ra, Da) g = - g. 

When there is a limit point nearby, the regular con- 
tinuation scheme fails. This can be overcome by par- 
ametrizing the problem with the pseudoarclength par- 
ameter s, measured along the solution path. Then, the 
dynamic parameter Ra is treated as an element of 
the unknown vector (e(s), n(s), Y(s), Ra(s)). Various 
parametrizing equations have been proposed in the 
literature. We use the one similar to that proposed by 
Keller [20]. namely 

w 
ss 

[(e(s) -t%%))‘-c (Q(s) -%0 

+ (Y(s) -‘Wd)‘l dxdy 
+(l-w)(Ra(s)-Ra(s,J)’ =(s--s~)~ (13) 

where w is a weight factor, used to give equal weight 
to all of the variables that go to define the arclength. 

Calculation of singular points 
Two frequently observed singular points in non- 

linear phenomena are the limit point (or a turning 
point) and a symmetry breaking bifurcation point. At 

a limit point, a solution branch comes from one side 
and turns back. A simple quadratic limit point can 
be located by solving the following extended system 
which was proposed by Moore and Spence [21] and 
Spence and Werner [22] 

F(u, Ra, Da) = 0, F,(u, Ra, Da)v = 0, I(v) = 1 

(14) 

where v = (0*, Q*, Y*) is the right null vector and the 
constraint I(v) = 1 forces the right null vector to be 
non-trivial. The extended system is not singular and 
can be solved by using the Newton-Raphson method. 
Solving the extended system of equations (14) means 
that the nonlinear equations (4)-(6) must be solved 
simultaneously with, F,(u, Ra, Da)v = 0 and L’(V) = 1 
for the unknowns (8,R,Y,fI*,SZ*,Y*,Ru). The 
extended system, equation (14) is solved over the half 
domain R+ for limit points that lie on the symmetric 
solution branches and over the full domain R for limit 
points on the asymmetric solution branches. 

Symmetry breaking bifurcation may be described 
as the bifurcation in which the solutions on one of 
the two intersecting branches are symmetric while the 
solutions on the other branch are asymmetric. The 
symmetry S is defined by 

s # I, s = 12, F(Su, Ru, Da) = SF(u, Ra, Da). 

Werner and Spence [23] showed that the pitchfork 
type symmetry breaking bifurcation point can be 
located by solving the same extended system equations 
(14) with the restriction u EX,, VEX, where X, and 
X, represent the symmetric subspace, [u(Su = u] and 
antisymmetric subspace, [u]Su = -u], respectively. 

Discretization 
The partial differential equations, equations (lO)- 

(12) were discretized using finite difference approxi- 
mations in the half domain R+ for symmetric solu- 
tions and the full domain R for the asymmetric solu- 
tions, respectively. The central difference scheme was 
used over a uniform grid where the grid points were 
numbered as [(x, yj)]i = O,.. .,N+ 1, j= 0,. .., 
M+ 11. For symmetric solutions, the discretized five- 
point formulae used in the interior of the grid were 
also used on the boundary [(O,y,)) = 0,. . . , M+ I]. 
This introduces an extra set of points outside the 
domain of interest which is eliminated by imposing 
the following symmetry conditions 

T-,, = T,j, O_,j = -O,,, P_,j = -P,j. 

The system of the finite difference equations yields a 
sparse matrix in which most of the elements are zero. 
To solve the sparse matrix at every Newton-Raphson 
step efficiently, the sparse matrix solver, SPARSPAK 
[24] was used. 
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RESUILTS AND DISCUSSION 

The physical mechanism and the nonlinearities that 
are responsible for the complex multiple solutions 
structure in any problem of natural convection are 
reasonably well understood. It is the embellishments 
caused by specific features (in the present case the 
effect of nonzero Darcy number, Da or the effects of 
the Brinkman term) that interests us. The domain of 
interest is a closed system into which there is no net 
flow. The two competing forces are the viscous and 
buoyancy forces. When the dynamic parameter, Ra is 
small enough that the viscous force dominates, there 
is a unique and stable solution. However, as Ra is 
increased, the strength of buoyancy is increased and 
it destabilizes the flow field. In this way, additional 
solutions bifurcate from the unique solution at certain 
critical values of Ra. The spatial symmetries that are 
broken within t!he constraint of two-dimensionality 
are also tracked. 

Recognizing that several different solutions can 
coexist at a certain Ra, a uniform grid which is fine 
enough to resolve all the details of different solution 
structures is used. For this, grid sensitivity tests were 
carried out at selected parameters and the results are 
shown in TablIe 1. Assuming the approximation 

Table 1. Grid sensitivity tests: (a) Richardson extrapolation 
of Nusselt number for Da = 0.0, Ra = 3000; (b) grid sen- 
sitivity test at regular points for Da = 0, Ra = 5000. ASl* 
was computed on (40 x 40) and (60 x 60) ; (c) variation of 
singular points with grid refinement for Da = 0, Ra = 5000 

(a) 
Grid Spacing Nusselt number 

5x10 0.10 12.2873 
10x20 0.05 12.3074 
15x30 0.03333 12.4027 
20x40 0.025 12.4374 
25 x 50 0.02 12.4537 
30 x 60 0.01667 12.4627 

extrapolated 0.0 12.4716 

(b) Nusselt number 
Grid 

Branch (20 x 40) (30 x 60) 

PM1 15.2354 15.2860 
IS1 high 14.6704 14.7446 
IS1 low 12.2466 14.2809 
ASl* 14.1360 14.1945 

(c) Ra 
Grid 

Singular point (20 x 40) (30 x 60) 

Ll 2856.03 2569.77 
SBl 4165.57 4237.56 
L2 4166.41 4238.12 
L3 4507.78 4436.06 

u x u(h) + ch2, where u is the exact solution and c is a 
constant independent of the grid spacing h, the Rich- 
ardson extrapolation scheme is used to obtain the 
solution at h = 0. Table 1 (a) shows that the computed 
Nusselt numbers for h = 0.025 N 0.01667 have less 
than 1% deviation from the Nusselt number obtained 
from the extrapolation. In Tables l(b) and (c), com- 
parisons of Nusselt numbers on various solution 
branches and singular points for the two different grid 
spacing h = 0.025 and 0.01667 are shown. As the grid 
is refined from h = 0.025 to 0.01667, Nusselt numbers 
on the various solution branches at Ra = 5000 differ 
by less than 1%. The location of the singular points, 
Ra change by less than 2%. These tests provide a 
measure of the accuracy of our numerical results. It is 
important to note that the overall solution structure 
in terms of the number of singular points and the 
interconnections of solution branches remained 
unchanged. Therefore, to keep the computational 
costs modest, all of the computations for this para- 
metric study were made using a grid spacing of 
h = 0.025, which is equivalent to the grids of (20 x 40) 
and (40 x 40) for the symmetric and the asymmetric 
solutions, respectively. 

Solution structure for Da = 0 
The Darcy model can be viewed as a special case of 

the more general Brinkman’s model. When Da + 0, 
the Brinkman viscous force term in equation (4) van- 
ishes and equation (4) is reduced to the Darcy equa- 
tion. Note that the order of the equation decreases in 
the limit of Da+ 0, thus making it impossible to 
satisfy the no-slip condition. Although this limiting 
case has been investigated in detail by Weinitshke et 

al. [2], the solution branches were reconstructed to 
verify the code and the results are summarized here 
so that they can be compared with the results for 
Da#O. 

Figure 2 shows the solution structure which consists 
of various solution branches for Da = 0 and up to 
Ra = 10,000. Expanded scales, used in Fig 2(b,c), 
reveal the detailed structure. The dotted lines are non- 
symmetric solutions and they occur in pairs, with one 
being the mirror image of the other. Since Nu is an 
averaged quantity both parts of an asymmetric branch 
have the same value and, hence, they appear as a 
single curve in these bifurcation diagrams. A unique 
solution on the primary branch, PM1 was easily 
obtained for Ra = 0 and then the entire branch of 
PM1 was generated using the arclength continuation 
scheme over the half domain R+. The first asymmetric 
solution branch, ASl, which bifurcates at the two 
symmetry breaking bifurcation points, SBl and SB2, 
was found by introducing asymmetric perturbation to 
the Euler-Newton method over the full domain R. 
The isolated symmetric solution branches, IS1 and 
IS2, and the asymmetric solution branches, AS2 and 
AS3 were generated in the same way. The singular 
points, namely the limit points and symmetry break- 
ing points, were located by solving the extended sys- 
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Fig. 2. Bifurcation diagram with Nusselt number as the state 
variable and Rayleigh number as the parameter for a fixed 
Darcy number of Da = 0 is seen in (a). Additional details of 
the bifurcation diagram are revealed by zooming in over 
Ra E [5000,6000] in (b) and over Ra E [6000,8000] in (c). 
PM1 refers to the primary solution branch, ISn refers to 
symmetric solution branches, ASn refers to asymmetric 
branches, Ln refers to limit points and SBn refers to sym- 

metry breaking bifurcation points. 

tern equation (14) and the Ra values of the singular 
points are listed in Table 2. It is seen that all the 
symmetry breaking bifurcations happen near the limit 
points. This phenomenon was also reported for Lap- 
wood convection [25] and the Morton problem [l]. 
However, the limit points and the symmetry breaking 
bifurcation points do not coincide since the symmetry 
breaking bifurcation occurs as a pitchfork. 

The Brinkman viscous force term in equation (4) 
now plays a role in determining the solution structure, 
permitting the no-slip conditions to be satisfied. Note 
that non-zero values of Da do not influence the sym- 
metries in the system. The solution structure for 
Da = 10e4 is shown in Fig. 3. The overall solution 
structure in Fig. 3 looks similar to that in Fig. 2 in 
terms of the number of solution branches and their 
interconnection. The precise location of the singular 
points Ra are given in Table 3. It is seen that the 
singular points in Table 3 move to higher values of 
Ra compared with those in Table 2. 

The stability test for each solution branch was also A new branching behavior is locally observed in 
carried out. If any eigenvalue of the matrix from the Fig. 3. The limit points which correspond to L7 and 
Frtchet derivative at a certain Ra has a positive real L9 in Fig. 2 disappear in Fig. 3 through a transcritical 
part, the solution at the Ra is considered unstable. In bifurcation. With the extended system formulations 
this study, the simple power iteration method com- of equation (14) such structural changes in the con- 
bined with the scheme which maps all the eigenvalues nectivity of the branches cot& be easily tracked by 
with negative real parts onto the unit circle was used simply continuing the solution of equation (14) in a 

Table 2. Singular points for Da = 0.0 

Singular point Branch Rayleigh number 

Ll PM1 2586.03 
SBl PM1 and ASI 4165.57 
L2 PM1 4166.41 
L3 IS1 4507.78 
L4 IS1 5369.95 

SB2 IS1 and AS1 5370.53 
SB3 IS1 and AS2 5542.19 
L5 IS1 5542.38 
L6 IS1 6594.96 

SB4 IS1 and AS3 7468.92 
L7 ISI 7622.09 
L8 IS1 7728.29 
L9 IS2 8651.91 

LlO ISI 9917.02 

to monitor the stability numerically. The lower part 
and the upper part of PM1 are stable, but the middle 
part of PMl, the solution path between Ll and L2, is 
not stable. The stable lower and the upper parts of 
PM 1 are analogous to those observed by Buretta and 
Berman [26] in their experiment. They reported an 
apparent discontinuity in the heat transfer curve for 
various permeable beds. They correctly postulated 
that the discontinuous jump in the heat transfer rate 
is a bifurcation phenomenon and multiple solutions 
must exist. This is the only known experimental obser- 
vation of bifurcation phenomena in porous media. 
The observations were on macroscopic quantity like 
the Nusselt number and not on the flow patterns or 
velocity fields. In the present study, multiple solutions 
start to appear beyond Ra = 2586.03 (Ll in Table 2). 
Our interest is to examine how this structure unfolds 
for nonzero Da. Note that the upper branch is only 
conditionally stable. It is unstable to non-symmetric 
perturbations. 

Solution structure for Da = 1O-4 
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Fig. 3. (a) Bifurcation diagram for a Darcy number of 
Da = 10m4. Additional details of the bifurcation diagram are 
revealed by zooming in over Ra E [4000,6000] in (b) and over 

Rae [6000,9000] in (c). Labels are as in Fig. 2. 

second parameter such as Da. Figure 4 shows the 
unfolding of the limit points, L7 and L9 with the 
change of Da. PLS Da is increased, L7 and L9 come 

Table 3. Singular points for Da = 10m4 Rayleigh number 

Singular point Branch Rayleigh number 

Ll 
SBl 
L2 
L3 
L4 

SB2 
SB3 
LS 
L6 

SB4 
Ll 
LS 
L9 

PM1 2612.72 
PM1 and AS1 4256.61 

PM1 4251.53 
IS1 4587.14 
IS1 5627.30 

IS1 and AS1 5628.14 
IS1 and AS2 5765.65 

IS1 5765.99 
IS2 6726.30 

IS1 and AS3 7917.26 
IS2 7960.55 
IS2 10264.36 
IS3 10458.79 

0 
Rayleigh number 

Fig. 4. Limit points L7 and L9 coalesce at a transcritical 
bifurcation point TC. 

closer and then disappear between Da = 0.93 x 1O-4 
and Da = 0.94 x 10m4 at the transcritical point labeled 
TC in Fig. 4. There are other extended system for- 
mulations that allow the precise computation of the 
point TC in the two parameter problem (Ra, D) and 
implementing such schemes would be useful if we are 
interested in tracking how the point TC changes with 
changes in a third parameter. For our purpose Fig. 4 
provides sufficient details on the structural changes. 
Figure 5 shows the bifurcation diagrams just before 
(Da = 0.93 x 10p4) and after (Da = 0.94 x 10e4) the 
transcritical bifurcation. Note that the limit points, 
L7 and L9 are very close in Fig. 5(a). The unstable 
branches ISlm and IS2u in Fig. 5(a) merge into the 
unstable branch IS2 in Fig. 5(b) through the trans- 
critical bifurcation. In the same way, the stable 
branches ISld and IS2d in Fig 5(a) merge into the 
stable branch IS1 in Fig. 5(b). Changing Da can be 

17 - 

woa 10000 

Raylelgh number 

Fig. 5. Unfolding of the bifurcation diagram around a trans- 
critical (TC) point. (a) just before TC at a Darcy number of 
Da = 0.93 x 10e4 and (b) just after TC at a Darcy number 

of Da = 0.94 x 10e4. 
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considered as a perturbation which does not affect the 
symmetry feature of the given system. Therefore, the 
symmetry breaking bifurcation point SB4 remains 
robust even if L7 which locates nearby SB4 disappears 
after the transcritical bifurcation. 

Solution structure for Da = 10e3 
The solution structure for Da = 10m3 is shown in 

Fig. 6(a) for Ra E [0, 1 SOOO] and expanded versions of 
the state diagram are shown in Fig 6(b,c) to reveal the 
details of the interconnection. The precise Ra values 
of the singular points are given in Table 4. As Da is 
increased from lop4 to 10p3, a pitchfork bifurcation 
occurs between isolated symmetric solution branches 
IS1 and IS2. The middle part of IS1 which connects 
the upper and the lower part of IS1 in Fig. 3 breaks 
up and then IS1 and IS2 exchange branches. As a 
result, the upper part of IS1 in Fig. 3 appears as IS2 
in Fig. 6. In Fig. 7, the bifurcation diagrams just 
before (Da = 0.7 x 10-3) and after (Da = 0.8 x 10m3) 
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11 12800 13wo 
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Fig. 6. (a) Bifurcation diagram for a Darcy number of 
Da = lo-‘. Additional details of the bifurcation diagram are 
revea1e.d by zooming in over RUE [8300, SSOO] in (b) and over 

I&ZE [12,800,13,000] in (c). Labels are as in Fig. 2. 

the pitchfork bifurcation are shown. IS1 and IS2 
approach each other as Da is increased in Fig. 7(a). 
At certain value of Da, IS1 and IS2 connect with each 
other. Eventually, IS11 and IS2u in Fig. 7(a) merge 
into IS2 in Fig. 7(b) while ISlr and IS2d in Fig. 7(a) 
merge into IS1 in Fig. 7(b). 

Each of the different solution branches in the bifur- 
cation diagram corresponds to different flow patterns. 
Across any singular point, there is a qualitative change 
in the flow pattern. In Fig. 6, a total of five different 
solutions are found at Ra = 7000. Three symmetric 
solutions are on PM1 and IS2 and two asymmetric 
solutions are on ASl. Since the asymmetric solutions 
occur in pairs in which one is the mirror image of the 
other, AS1 in Fig. 6 represents two different asym- 
metric solutions. The contours of the streamlines and 
isotherms for the five different solutions are shown in 
Fig. 8. It is seen that the upper part of PM1 and the 
upper part of IS2 have four-vortex flow patterns while 
the lower part of IS2 and AS1 have two-vortex flow 
patterns. 

Below Ra value of the first limit point Ll, there is 
only one solution branch which gives a unique solu- 
tion. The variation of Ll with Da was traced and the 
result is shown in Fig. 9. Upon increasing Da, Ll 
moves to higher values of Ra. The feature of multiple 
solutions appear at higher values of Ra as Da is 
increased. Therefore, it is conjectured that the Brink- 
man viscous force term acts as an additional damping 
mechanism which retards bifurcations to multiple 
solutions. 

Finally, the effects of Da on heat transfer rates are 
shown in Fig. 10. The curves in Fig. lO(a,b) represent 
the lower part of PM1 and the upper part of PMl, 
respectively. As can be seen in Fig. 10, the Nusselt 
number decreases as Da is increased for a given value 
of Ra and the deviation is larger at a higher Ra. 

CONCLUSIONS 

A numerical study of natural convection in square, 
two-dimensional porous media with a uniform volu- 
metric heating has been presented. The Brinkman’s 
extension of the Darcy equation and a single energy 
equation are employed to describe the system. The 
multiplicity feature of the problem has been resolved 
using algorithms from bifurcation theory. Complete 
solution branches are tracked using the arclength con- 
tinuation scheme combined with the Newton-Raph- 
son method. Limit points and symmetry breaking 
bifurcation points are also calculated solving the 
extended system. From qualitative changes of solution 
structures and unfoldings of singular points with vari- 
ation of Da, the non-Darcy characteristics of the given 
problem have been investigated. A transcritical bifur- 
cation is found at Da between 0.93 x 10m4 and 
0.94 x 10m4. A pitchfork bifurcation is found on iso- 
lated symmetric solution branches at Da between 
0.7 x 10e3 and 0.8 x 10W3. The bifurcation which leads 
to multiple solution from a unique solution occurs at 
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Fig. 7. Unfolding of the bifurcation diagram around a pitch- 
fork (PF) bifurcation point. (a) just before PF at a Darcy 
number of Da = 0.7 x lo-’ and (b) just after PF at a Darcy 

number of Da = 0.8 x lo-‘. 

Fig. 8. Five different solutions exist at Ra = 7000 and 
Da = lo-‘. Contours of streamlines (left) and isotherms 
(right) are shown for each solution. (a) Four-vortex pattern 
on PM; (b) four-vortex pattern on the upper part of IS2, 
(c) two-vortex patlem on the lower part of IS2, and (d) 

asymmetric two-vortex pattern on ASl. 

unique solution 

Fig. 9. Variation in the limit point Ll with Darcv number 
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Fig. 10. Nusselt number vs Rayleigh number for various Da. 
(a) On the lower part of PM 1; and (b) on the upper part of 

PMl. 



Table 4. Singular points for Da = IO-’ 9. Whitaker, S., The equations of motion in porous media. 
Chemical Engineering Science, 1967,21,291. 

Singular point Branch Rayleigh number 10. Beavers, G. S. and Sparrow, E. M., Non-Darcy flow 
through fibrous porous media. Transactions of the 

Ll PM1 2845.13 ASME Journal of Applied Mechanics, 1969,36,71i. 
SBl PM1 and AS1 5418.32 11. Beavers, G. S. and Joseph, D. D.. Boundary conditions 
L2 IS2 5242.63 at a naturally permeable wall. Journal of Fluid Mech- 
L3 PM1 5420.68 anics, 1967,30, 197. 
L4 IS1 8352.88 12. Saffman, P. G., On the boundary conditions at the sur- 
L5 IS1 8363.71 face of a porous medium. Studies in Applied Math- 

SB2 IS1 and AS2 8372.66 ematics, 1971,50,93. 
L6 IS1 8372.72 13. Forchheimer, P. H., Zeitschrift oer Deutscher Ingineur, 

SB3 ISI and AS1 8375.11 1901,45, 1782. 
Ll IS2 10058.51 14. Brinkman, H. C., A calculation of the viscous force 
L8 IS1 12848.94 extended by a flowing fluid on a dense swarm ofparticles. 

SB4 IS1 and AS3 12913.91 Applied Scientific Research, 1947, Al, 21. 
L9 IS1 12926.34 15. Chan, B. K. C., Ivey, C. M. and Barry, J. M., Natural 

LlO IS2 13342.03 convection in enclosed porous media with rectangular 
boundaries. Transactions of the ASME Journal of Heat 

_ Transfer, 1970, 92,21. 
16. Vafai, K. and Tim, C. L., Boundary and inertia effects 

higher values of Ra as Da is increased. Heat transfer on flow and heat transfer in porous media. International 

rates decrease as Da is increased. 
Journal of Heat and Mass Transfer, 1981, 24, 195. 

17. Tong, T. W. and Subramanian, E., A boundary-layer 
analysis for natural convection in vertical porous enclos- 
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